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a b s t r a c t

J’errais dans un méandre ;

J’avais trop de partis,

Trop compliqués, à prendre...

(Edmond Rostand,

Cyrano de Bergerac)

Meander is a self-avoiding closed curve on a plane which in-
tersects a straight line in a given set of points. Meander is
a very simple object. In the elementary school, we may ask
children to draw a few meanders and to admire their strange
beauty. In the middle school, we may ask children to perform
an exhaustive search of the meanders with a small number of
intersections with the line. Then, gradually, we start to perceive
an incredible profoundness of the subject, whose relations go
from enumeration to quantum field theory and string theory.
Pierre Rosenstiehl was one of the pioneers in the study of the
algorithmic aspects of meanders, and he also was a passionate
connoisseur of labyrinths, of which the meanders are a particular
case.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is a follow-up of my talk, in the presence of Pierre Rosenstiehl, at the conference in
is honor held at the University of Bordeaux in April 2015 entitled Labyrinth day.
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Fig. 1. The god Meandros, one of the sons of Oceanus and Tethys (Milet, Asia Minor). A copy of a postcard sent to the
author by Jean-Guy Penaud, August 1992.

The literature on labyrinths is immense. For my bibliography, I chose only two books. The first is
he Maze and the Warrior: Symbols in Architecture, Theology, and Music, by Craig Wright [33], because
f a wide range of subjects treated, from symbolic of an epic journey through this sinful world to
alvation in religious books, and to certain compositions by J. S. Bach. The second one is Le labyrinthe
es jours ordinaires, by Pierre Rosenstiehl [26]: he offered me a copy during the above-mentioned
abyrinth day.
Meanders represent a subclass of labyrinths: properties which distinguish them among all

abyrinths are explained in detail in the preprint of Phillips [23] (see also Phillips’s web-site [22]).
ainly, meanders are unicursal labyrinths, that is, without bifurcations or branching: at no place

here is a choice as to what direction to take. The path just goes back and forth. A priori it is difficult
o believe that something interesting may come out of these simple objects. And yet. . .

There are quite a few examples in Mathematics when the first impetus to study certain objects
omes from their visual beauty, and only later, gradually, it becomes clear that there is a profound
athematical structure behind them. Take, for example, complex dynamical systems: after the
dvent of computers the striking beauty of fractals inspired a great enthusiasm of many researchers.
eanders represent a similar, though more modest, example of this phenomenon. The termmeander
as coined by Vladimir Arnold. Maybe it is worth saying that historically Meander was the name
f a river in the Asia Minor, in the ancient region Caria.

The Maeander1 was so celebrated in antiquity for its numerous windings, that its classical
name ‘‘Maeander’’ became, and still is, proverbial.

(Wikipedia)

oday this territory belongs to Turkey, and the river is called Büyük Menderes (which means Grand
enderes) (see Fig. 1).
In order to continue our discussion we need to know what a meander is.

efinition 1.1 (Meander). Ameander of order n is a self-avoiding plane closed curve which intersects
strait line in 2n points. Meander is defined up to an isotopy of the plane which preserves the

ntersection points.

1 Maeander is a Latin denomination, while the Ancient Greek denomination is Maíandros ( ).
2
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Fig. 2. Left: a closed meander. There are 14 intersection points, hence this meander is of order 7. Right: an open meander
with 11 intersection points.

Fig. 3. Left: the classical image of the Cretan labyrinth. It is engraved on many ancient coins, medallions, etc. It may
lso be found in the medieval Hebrew book Sefer Haftarot (the Book of Excerpts), where it represents the seven walls
f Jericho. We have added to this image a horizontal line in order to relate the passage through the labyrinth to the
eander shown on the right. Right: a half-open meander corresponding to the passage from the entry of the Cretan

abyrinth to its center.

An example of a meander is shown in Fig. 2, left.
The above definition admits several variations:

• We may replace the plane by the sphere, considering the straight line as its equator. Thus, a
spherical meander may be considered as a pair of non-self-intersecting circles which intersect
each other in 2n points. In order to be coherent with Definition 1.1, we mark one of the
intersection points.

• Open meanders: they are not circles but lines coming from −∞ and going to +∞. They may
intersect the straight line in even number of points and return to the same half-plane, or
intersect it in odd number of points and leave the picture in the other half-plane.

• Half-open meanders: they come from infinity but get stuck somewhere in a dead-end. In
labyrinths, such a dead-end is often a center, a goal to reach.

Closed meanders are those which correspond to Definition 1.1. The adjective ‘‘closed’’ is used
when it is necessary to oppose them to other species of meanders described above. We will mainly
work with closed meanders.

Fig. 3 illustrates the relation between meanders and labyrinths: a meander is a path inside
a labyrinth without bifurcation. We may say that meander is a dual to labyrinth. In Fig. 4, we
3
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Fig. 4. Left: Theseus kills Minotaur. Detail of a panel (1510–1515) at the Petit Palais d’Avignon, by an anonymous painter
traditionally called Maestro dei Cassoni Campana. Right: a schematic representation of the same labyrinth. We see that
the labyrinth is unicursal: one does not need an Ariadne’s thread in order to find a way out. One just has to keep going,
and to believe that his efforts will ultimately lead him to an exit.

see a more sophisticated example of a ‘‘simple alternating transit maze’’, as they were called by
Phillips [23]. I did not try to draw the corresponding meander.

2. A few historical remarks

A mere two decades ago, it was quite a task to find bibliographical sources for one’s work.
Today, the difficulty is opposite: one has to find way in the labyrinth of references to references to
references, and this labyrinth is in no way unicursal. Fortunately, the study of meanders or, more
exactly, of structures similar to them, was not very active. Here are a few references I was able to
find (and to choose) concerning the prehistory of our subject.

• A combinatorial problem similar to that of meanders is that of the folding of a strip of stamps.
Apparently, it was first stated on page 29 of a little book [28] (1926) by André Sainte-Laguë.
Certain authors call this book ‘‘the zeroth book on graph theory’’: indeed, the book Theory of
Finite and Infinite Graphs by Dénes König, which is traditionally considered as the first book on
the subject, was published in 1936, thus, ten years later.

• The stamp-folding problem was attacked by Jacques Touchard in 1950 [30] (see Fig. 5), and in
1968 there appeared two papers treating this problem: one by John Koehler [16], and one by
W. F. Lunnon [21]. The problem was even mentioned in the New York Times Science section for
January 27, 1987 (see [23]).

• The next step was taken by Pierre Rosenstiehl and his various co-authors, see [25,27] in 1984,
and [11] in 1986. They called the objects under study Jordan permutations (see Fig. 6) and
considered various algorithmic problems related to them. By the way, the fact that these
permutations may be sorted in linear time implies the exponential (and not factorial) upper
bound for their number, a question which will be raised several times in the future.

• Certain sources remain unavailable. For example, according to Arnold [3], in 1978 Yakov
Eliashberg proved a generalization of the theorem of Poincaré–Birkhoff (see below) to surfaces
4
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Fig. 5. An excerpt from Jacques Touchard’s paper [30], 1950. Sorry for the quality of the image.

Fig. 6. An excerpt from Pierre Rosenstiehl’s paper [25], 1984.

of arbitrary genus, and he used meanders in his proof. Unfortunately, this proof was published
as a preprint of the university of Syktyvkar2 [9].

A parallel story took place in Moscow, and its central figure was Vladimir Igorevich Arnold
1937–2010). Arnold was a man of very strong convictions, not always conventional. For him, the
reatest mathematicians of all times were Newton and Poincaré. Such people as Gauss or Euler
ere dwarfs as compared to these two giants. Naturally, Arnold became the chief editor of the
ussian translation of the four-volume edition of Collected Works of Henri Poincaré. The very last
aper, published in 1912, the year of Poincaré’s death, was called ‘‘Sur un théorème de géométrie’’.
oincaré did not succeed to prove the theorem in question but he still decided to share his ideas
ith the mathematical community. (The theorem was proved the next year by George Birkhoff.)
An image in this paper (see Fig. 7) apparently impressed Arnold. Traditionally, he devoted the

irst session of his seminar to proposing a list of problems to work on. So, in its turn, he gave a
roblem of enumeration of meanders (the term is also his). He also wrote an article about them for
vant, a scientific-popular magazine for high-school students, and used them as a tool in [2].
There was also another part to this story. Arnold, while being one of the greatest mathematicians

f his generation, rather late, near fifty, got acquainted with the Catalan numbers. He was full of

2 Syktyvkar is a town 1000 km to north-east from Moscow. The average yearly temperature over there is 1.3 ◦C and
ay descend to −46.6 ◦C in January, and to −5 ◦C in June. In 1989, professor Eliashberg moved from Syktyvkar to
tanford where the climate is more clement.
5
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Fig. 7. Excerpt from Henri Poincaré’s paper [24], 1912.

nthusiasm and talked about them to everybody who was ready to listen. One can imagine his
eaction when he learned that the meander problem is related to these numbers. (By the way,
hen in 1990, already in France, I talked about this problem to Philippe Flajolet (1948–2011), his

irst reaction was that it should be related to the Catalan numbers.)
All these activities resulted in two papers [17,18] by Sergei Lando, who was a former Arnold’s

tudent, and me.
Here begins my own meandering way from Moscow to Bordeaux. Many people played an

mportant role in changing the course of my life, but I would mention here only one of them: Michel
endès France (1936–2018). During all his career as a mathematician Michel was taken up with
urly curves, as is shown by his paper [8] (and some unpublished preprints), his graphical works,
nd also his lectures to students when he explained how to measure the length of such curve by
ounting the numbers of intersection points of the curve with a randomly laid ruler. So it was a
reat chance for me when Michel was appointed as a referee for the talk I proposed to the FPSAC
onference held in Bordeaux in April 1991.
Well, after this long introduction, let us move to Mathematics.

. Preliminaries

efinition 3.1 (Arc Diagram). An arc diagram of order n is a collection of n non-intersecting arcs,
ach of them connecting two points of a set of 2n points on a straight line.

Fig. 12 shows all the five arc diagrams of order 3.
It is well-known that the number of the arc diagrams of order n is the nth Catalan number

Cn =
1

n + 1

(
2n
n

)
.

symptotic for these numbers easily follows from the Stirling formula:

Cn ∼
1

√ 4n n−3/2,

π

6
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Fig. 8. If we glue the upper and the lower arc diagrams to each other we get a meander system. In this example the
ystem is composed of four components.

Fig. 9. An alphabet to encode meander systems: aa = l (left), ab = u (up), ba = d (down), bb = r (right).

nd their generating function is
∞∑
n=0

Cn tn =
1 −

√
1 − 4t
2t

.

rc diagrams of order n may be encoded by the Dyck words of length 2n. Dyck words are the words
in the alphabet {a, b} such that |w|a = |w|b, and for any prefix u of w we have |u|a ≥ |u|b. Each

etter a corresponds to the left end of an arc, and a letter b corresponds to the right end of an arc.

efinition 3.2 (Meander System). Let us take two arc diagrams of the same order n, turn one of
hem upside-down, and glue them together along their horizontal lines, see Fig. 8. What we get is
meander system which may be composed of several meanders, their number varying from one to
. Thus, a meander is a meander system with a single component.

otation 3.3 (Number of Meanders). We denote by Mn the number of meanders of order n.

It is easy to verify that any upper arc diagram may be completed to a meander (that is, a meander
ystem with a single component) by an appropriate lower arc diagram. Thus, we obtain trivial upper
nd lower bounds:

Cn ≤ Mn ≤ C2
n .

We may use an alphabet of four letters {l, u, d, r} in order to encode the meander systems: the
eaning of the letters is clear from Fig. 9.
Note however that, while the language of the Dyck words admits a simple characterization by a

ontext-free grammar, and hence its generating function is algebraic, the language of the meander
ystems does not have such a representation. Indeed, the generating function for the squares of
atalan numbers is not algebraic: it may be represented by an elliptic integral, see [17]:

∞∑
C2
n t2 =

1
4t2

(
−1 +

1
2π

∫ 2π√
1 − 8t cosϕ + 16t2 dϕ

)
.

n=0 0

7
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Fig. 10. Left: this meander corresponds to the word lr; a word corresponding to a meander, if it is not lr itself, cannot
contain this word as its factor. Middle: a reducible meander system; the corresponding word lu(ldur)dr contains a factor
hich is itself a meander. Right: this meander system is not connected but it does not contain a factor corresponding to
meander or to a meander system. We call the meander systems as the one on the right irreducible.

. Bounds, estimates, and asymptotics

Anthony Phillips writes in [23]:

In December of 1986 I ran into Paul Erdős at a party and told him about my interest in
this combinatorial problem. He asked me whether the number Mn seemed to be increasing
exponentially or even factorially with n.

Arnold asked us same question. The bound Mn ≤ C2
n makes the answer evident. It is generally

accepted that the numbers Mn have the asymptotics of the form

Mn ∼ Const · Ann−α
; (1)

nobody has ever tried to introduce logarithmic terms. The above bounds imply 4 ≤ A ≤ 16.
According to [23], Larry Shepp proposed the following simple idea. Consider the words of

length 2n over the alphabet {l, u, d, r} and forbid the factors lr (see Fig. 10, left). Then we get a
imple rational language accepted by an automaton with three sates. This construction gives us the
stimate

A ≤ (2 +
√
3)2 = 13.92820323 . . .

What else would we like to forbid?
It is natural to consider only those meander systems that do not contain a proper factor which

s itself a meander system, see Fig. 10. This idea was explored in [17].3 Numerically, the gain is not
ery significant. But the bound itself is beautiful:

roposition 4.1 (A Bound for the Growth Rate). The growth rate A admits the following bound:

A ≤

(
π

4 − π

)2

= 13.39408018 . . .

The method itself deserves a closer attention. There is a well known and widely used techniques
of getting algebraic generating functions from context free languages describing the objects we want
to count. In French, context free languages are called « langages algébriques »; we have used, to
obtain the above bound, a « langage analytique »: it contained infinitely many production rules. In
the final resort, we wrote a generating function for the production rules and thus collected them into
single object. The details are rather long to be exposed here; the reader may address the original
aper [17].

3 I saw somewhere that the same bound was also found by A. B. Lehman. He did not publish his result, and I cannot
now find the source of this information.
8
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This line of thought was pushed further in [1]. By considering various languages describing
ubsets of meanders and systems containing meanders, the authors obtained the following bounds:

11.380 ≤ A ≤ 12.901.

he numerical estimate of this parameter is A = 12.26287 . . . (see [13]). The nature of the constant
A is unknown.

Now we come to the most unusual part of the story. Physicists know, and nowadays specialists
in enumerative combinatorics know too, that the most important parameter in (1) is the critical
xponent α. For physicists, it determines the type of the phase transition; for mathematicians,
he type of singularity on the border of the range of convergence of the generating series. In
he paragraph that follows we will use a large paraphernalia of theories and terminology from
heoretical physics. I do not pretend to understand even a fraction of it. Hence, I systematically
se quotation marks to underline the fact that there is a universe of knowledge behind each term.
hat is even more important, the words like ‘‘therefore’’ will also be put into quotation marks: they
o not have, or at least may not have the usual mathematical meaning. Ultimately, even physicists
hemselves admit that the ‘‘result’’ presented here, no matter how remarkable it is, is not a theorem
ut only a conjecture. However, this conjecture is not just a wild guess; it is supported by a plausible
easoning à la Pólya and by experimental data.

I follow here the paper [7]. The problem of meanders ‘‘may be interpreted’’ as a model of ‘‘a pair
f two fully packed loops’’. Now, a model of one fully packed loop has a ‘‘central charge’’ c = −2.
‘Therefore’’, the central charge for the model of two fully packed loops and, hence, for the model
f meanders, is c = −4. There are reasons to believe that the model satisfies the ‘‘conformal invari-
nce’’ property. If this is the case then, using the Knizhnik–Polyakov–Zamolodchikov equation [14],
ne may express the ‘‘string susceptibility’’ γstr through the central charge:

γstr =
c − 1 −

√
(25 − c)(1 − c)
12

.

Finally, the critical exponent α is expressed in terms of the string susceptibility as follows:

α = 2 − γstr.

For c = −4 all this gives

α =
29 +

√
145

12
= 3.420132882 . . . (2)

As one of our colleagues used to say, « cela ne s’invente pas ».
In [13], a technology is developed of extracting numerical values of parameters of asymptotics

of integer sequences from a finite number of known terms. In particular, the authors applied their
techniques to the asymptotics of closed meanders and found out that the above value (2) did not
contradict their numerical results.

5. Computing the exact numbers of meanders

Nobody likes algorithms of exponential complexity, and we all understand why. Meanwhile, such
algorithms have an important advantage: if, instead of the complexity ∼ Cn, we get ∼ (C/k)n, this
ill give an acceleration with rate kn. That is, the improved algorithm will be exponentially more
fficient than the original one. This is what happened with the use of the algorithm designed by
wan Jensen [12]. All the previous algorithms had the complexity proportional to the number of
eanders, that is, roughly, 12.26n. The algorithm of Jensen is also exponential, but its complexity is
roportional to 2.58n. Thus, the acceleration factor is, once again very roughly, 4.75n: quite a feat!
he computations that used to take months of work on a multi-processor supercomputer, now took
nly a few minutes on a modest desktop.
The numbers of closed meanders computed up to now are given in Table 1.
The algorithm designed by Jensen is based on the method of transfer-matrix widely used in

tatistical physics. Meanders are cut by vertical lines, as is shown in Fig. 11, and every cut is
9
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Table 1
Numbers of closed meanders up to n = 28. Computations by Iwan Jensen (first 24
terms) and Andrew Howroyd; see [29], Entry A005315.
n Nb. of meanders n Nb. of meanders

1 1 15 602188541928
2 2 16 5969806669034
3 8 17 59923200729046
4 42 18 608188709574124
5 262 19 6234277838531806
6 1828 20 64477712119584604
7 13820 21 672265814872772972
8 110954 22 7060941974458061392
9 933458 23 74661728661167809752
10 8152860 24 794337831754570367812
11 73424650 25 8499066628515413229282
12 678390116 26 91412898898828176826244
13 6405031050 27 987975910996038555989486
14 61606881612 28 10726008363361842734385644

Fig. 11. A figure from [12], with a slightly changed notation The sequence of intersection points of the meander with
each vertical line is characterized by a Dyck word. The integers at the bottom indicate how many arcs go under the
horizontal line.

characterized by a Dyck word (an additional information needed by the algorithm is the number
of ‘‘letters’’ below the horizontal line). The matrix T in question contains the information of the
ossible ‘‘transfers’’ from a word to the next one which preserve connectedness of the curve. Clearly,
he matrix is very sparse. What we need is then to compute the power T 2n+1 (here 2n + 1 is the
umber of vertical lines).
The first impression is that the size of the matrix is proportional to the number of Dyck words,

hat is, to the corresponding Catalan number. It turns out, however, that not all Dyck words may
ppear in this context. A subtle analysis gives the declared above complexity 2.58n.

. Meander determinant

I now come to the result which is, to my mind, the most remarkable and also, I would say, the
ost enigmatic of everything that was done about meanders. It shows that behind these objects

here is some hidden and very rich structure.
10
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Fig. 12. Five 3-arc diagrams.

Prehistory. In 1989, Witten [32] introduced certain invariants of 3-manifolds which were based
n Quantum Field Theory.
In 1991, Lickorish [20] constructed the same invariants using the Jones polynomials; he has also

hown that, indeed, they are invariants if the determinant of certain matrix M(q) becomes equal
o zero when the parameter q takes the form cos(2π/m).

The same year, Ko and Smolinsky [15] proved that this is indeed the case.
Finally, in 1996 Philippe Di Francesco [6] discovered an explicit expression of the determinant

etM(q) in terms of the Chebyshev polynomials of the second kind. In his construction he used
he fact that the matrix in question is the Gram matrix of a change of bases in the Temperley–Lieb
lgebra.
We must now introduce the matrix itself.
The meander matrix. The matrix Mn(q) will be of the size Cn × Cn, where Cn is the nth Catalan

umber. Its columns correspond to the arc diagrams of order n; its rows, to the same arc diagrams
rawn upside-down. When we take a column and a row and glue together the corresponding upper
nd lower diagrams, we get a meander system. If this meander system has k components, we put qk
n the intersection of the corresponding column and row; here q is a formal parameter. For example,
he meander system of Fig. 8 leads to q4 at the corresponding position in the matrix.

xample 6.1 (Meander Matrix M3). Let us take five 3-arc diagrams, see Fig. 12. They will label the
olumns of the matrix M3, while the rows will be labeled by the same diagrams upside-down.
As a result, we get the following matrix:

M3 =

⎛⎜⎜⎜⎝
q3 q2 q2 q q2

q2 q3 q q2 q
q2 q q3 q2 q
q q2 q2 q3 q2

q2 q q q2 q3

⎞⎟⎟⎟⎠ .

heorem 6.2 (Di Francesco [6]). The determinant of the matrix Mn is equal to

detMn =

n∏
k=1

Uk(q/2)an,k ,

here U(t) are Chebyshev polynomials of the second kind defined by the identity Un(cosϕ) =

sin(n + 1)ϕ
sinϕ

, while the exponents an,k are determined by the following formula:

an,k =

(
2n

n − k

)
− 2 ·

(
2n

n − k − 1

)
+

(
2n

n − k − 2

)
(3)

when n− k− 1 and/or n− k− 2 become negative, the corresponding binomial coefficient is considered
o be equal to zero).

In Example 6.1 we have

U1(q/2) = q, U2(q/2) = q2 − 1, U3(q/2) = q3 − 2q,

nd

a3,1 =

(
6
)

− 2 ·

(
6
)

+

(
6
)

= 15 − 2 · 6 + 1 = 4,

2 1 0

11
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a3,2 =

(
6
1

)
− 2 ·

(
6
0

)
= 6 − 2 · 1 = 4,

a3,3 =

(
6
0

)
= 1,

o that the determinant is

detM3 = q4(q2 − 1)4(q3 − 2q).

Remark 6.3 (Negative Exponents). An exponent an,k may well become negative; this only means that
he corresponding factor is already present in another one, and its degree is greater than needed.
hus, for example, for n = 8 and k = 1 we have

a8,1 =

(
16
7

)
− 2 ·

(
16
6

)
+

(
16
5

)
= 11 440 − 2 · 8 008 + 4 368 = −208.

he factor q−208 is here in order to compensate extra degrees of q coming from powers of the
olynomials

U3(q/2) = q3 − 2q, U5(q/2) = q5 − 4q3 + 3q, U7(q/2) = q7 − 6q5 + 10q3 − 4q.

If we look at the sequence
(

2n
n − k

)
, k = 1, . . . , n, ‘‘from far away’’, it will resemble the density

f the normal distribution (only the abscissa goes from right to left), while formula (3) for the
xponents resembles the second derivative of the density. It is thus not surprising that the second
erivative changes its sign somewhere near the standard deviation.

emark 6.4 (Trace of M2
n). It is easy to see that

tr(M2
n) =

n∑
k=1

Mn,kq2k,

here Mn,k is the number of meander systems of order n with k components. Taking once again
xample 6.1 we get

tr(M2
3) = 8q2 + 12q4 + 5q6.

nfortunately, nobody has as yet given an explicit formula of this trace.
And why not use this trace in order to compute, say, two more terms in Table 1, that is, M29 and

30? Alas, to do that we would need a matrix M30 of size C30 × C30 where C30 is the 30th Catalan
umber,

C30 = 3 814 986 502 092 304 ≈ 3.8 · 1015,

hile the trace itself is a polynomial of degree 60, maybe cumbersome but certainly manageable.

. Composition of coverings

This section is a bit speculative. I would like to indicate here a direction of research in which
eanders (or their generalizations) may eventually play an important role.
The standard way of describing a ramified covering f : X → Y , where X and Y are two-

imensional manifolds, is as follows. Let B = {b1, . . . , bk} ⊂ Y be the set of branch points, and let y0
e a non-branch point. Then we draw loops on Y attached to y0, which generate the fundamental
roup π1(Y \ B, y0); and then associate to each loop a permutation on the preimage X0 = f −1(y0).
his construction may be found in practically every textbook of algebraic topology. Our remark is
hat this construction becomes much more manageable and transparent if we consider the preimage
ot of a single point but of a certain figure drawn on Y which ‘‘involves’’ in some way the branch
oints.
12
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Fig. 13. Left: an ‘‘ordinary’’ map with six edges. It is obtained as a preimage of a segment via a ramified covering of
degree 12. It turns out that this covering is a composition of two coverings, of degree 3 and 4, respectively. Right: we
transform this map into a bicolored map with 12 edges by putting a white vertex in the middle of each edge. After that,
the 12 edges are labeled.

An example of this construction is given by maps and hypermaps (or, equivalently, maps with
icolored vertices). They are geometric representations of ramified coverings of the sphere Y = S2
ith three ramification points. We color one of these three ramification points in black (•), another
ne, in white (◦), and the third one, say, mark by asterisk (∗). Then we connect the black and the
hite points by a segment and lift this segment onto the covering surface X . What we will see in
he latter surface is an embedded bipartite graph, with vertices colored in black and white, and the
omplement to this graph will be a disjoint collection of topological disks each of which contains a
ingle preimage of the point marked by asterisk. (In pictures, we often do not draw explicitly the
sterisks, and when the degrees of white vertices are all equal to 2 we often omit them too, thus
btaining an ‘‘ordinary’’ (i. e., not bicolored) maps.
Other possibilities are also often in use, especially when there are more than three ramification

oints. One may draw a Jordan curve passing through all ramification points, or else draw a star-tree,
ith the center at the base point y0 and the rays going to the points b1, . . . , bk.

efinition 7.1 (Passport). The passport of a covering of degree n is the sequence of partitions of n
epresenting the multiplicities of the preimages of ramification points. Therefore, for a bicolored
ap the partitions in question represent the degrees of the black vertices, of the white vertices,
nd of the faces.

xample 7.2 (Passport). The map on the right of Fig. 13 has 12 bicolored edges; therefore, the degree
f the corresponding covering is 12. Its passport is (61312111, 26, 61312111). Notice the specific

notion of the face degree: it is equal to half of the number of edges surrounding the face (otherwise
the sum of the degrees would be 24 instead of 12).

Exercise 7.3 (Maps with the Same Passport). There exist, in total, 18 maps with the same passport
(61312111, 26, 61312111) as above. Find them all. For four of them, the coverings are decomposable.

Remark 7.4 (Use Advanced Tools with Care). If you use GAP in order to find the permutations
representing the maps in question, do not forget to impose the transitivity condition, otherwise
you will find 20 solutions. If you use the Frobenius formula with characters of the symmetric group
in order to find the number of the maps in question you will get the answer 19 1

2 . The reason is, one
f the ‘‘disconnected maps’’ has a symmetry of order 2.

The goal of this section is to discuss the situation of the composition of coverings

f : X → Y , g : Y → Z, h = g ◦ f : X → Z .

heorem 7.5 (Ritt’s Theorem). A ramified covering is a composition of coverings of smaller degrees if
nd only if its monodromy group is imprimitive.
13



A.K. Zvonkin European Journal of Combinatorics xxx (xxxx) xxx

d

E

Fig. 14. The bicolored map with 12 edges is projected onto a bicolored map with four edges (or, if you ignore the white
vertices, on an ‘‘ordinary’’ map with two edges). The black–white edges of the smaller map are labeled by the blocks (4)
of the action of the triple of permutations σ , α, ϕ. The four ramification points are indicated by the shaded circles.

A proof, with a detailed discussion, may be found in [34].
Let us look at the map on the left of Fig. 13. It turns out that the covering of degree 12 which

produces this map is a composition of two coverings, of degrees 3 and 4, respectively. The reader
must agree that this fact does not jump to the eyes. Even the specialists in the theory of dessins
’enfants do not find this fact evident.

xample 7.6 (Composition). As usual, we represent the map of Fig. 13 by a triple of permutations
σ , α, ϕ acting on the bicolored edges: σ rotates the edges around black vertices, α around white
ones, and ϕ around the face centers, all in the positive direction. (The center of the outer face is
situated ‘‘on the opposite side’’ of the sphere; therefore, the direction of the rotation of this dace
may seem to be negative but in fact it is also positive). We may note that σαϕ = 1.

The action of these permutations is imprimitive: considering the blocks

a = {0, 4, 8}, b = {1, 5, 9}, c = {2, 6, 10}, d = {3, 7, 11} (4)

we have

σ = (0)(1, 2, 3)(4, 8)(5, 6, 7, 9, 10, 11) ⇝ (a)(b, c, d)(a, a)(b, c, d, b, c, d) → (a)(b, c, d),

α = (0, 5)(1, 8)(2, 7)(3, 6)(4, 9)(10, 11) ⇝ (a, b)(b, a)(c, d)(d, c)(a, b)(c, d) → (a, b)(c, d),

ϕ = (0, 11, 9, 8, 3, 5)(1, 4, 7)(2, 6)(10) ⇝ (a, d, b, a, d, b)(b, a, d)(c, c)(c) → (a, d, b)(c).

The map corresponding to the triple of permutations

σ̄ = (a)(b, c, d), ᾱ = (a, b)(c, d), ϕ̄ = (a, d, b)(c)

is shown on the right of Fig. 14. There are four ramification points situated on this map: they
are marked by shaded circles. For example, the black vertex of degree 3, ‘‘described’’ by the cycle
(b, c, d), is lifted as (b, c, d)(b, c, d, b, c, d), with branching multiplicities 2111.

Let us cut the sphere of the smaller map into two parts by the horizontal line passing through
the ramification points, and consider the following branching permutations of degree 3 over these
points:

s1 = (1, 2), s2 = (2, 3), s3 = (1, 2), s4 = (1, 3) (notice that s1s2s3s4 = 1).

The result is shown in Fig. 15. We see three shaded areas and three white areas; in each of them,
is repeated the image of the shaded and of the white areas of the smaller map. The resulting dessin
is isomorphic to the initial map of Fig. 13 (we removed white vertices in order to make the picture
less charged).

The reader may agree that the task of decomposing a map with only six edges turns out to be
far from trivial, and even when a solution is explicitly presented it is not that easy to understand
it. Here is a short and certainly incomplete list of difficulties we may encounter in a more general
situation:
14
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Fig. 15. The figure drawn in the shaded area on the right is repeated three time in the three shaded quadrilaterals on
he left. The same procedure is used for the white areas. Can you recognize, on the left, the initial map of Fig. 13?.

Fig. 16. The five ramification points lie on a line, but their order is not the one we would like to have. We then imagine
he straight line as a broken one, and ‘‘mentally’’ stretch it to obtain a good order.

1. The picture drawn on the intermediate level Y may be much more complicated than a simple
two-edge map on the right of Fig. 15.

2. The ramification points may be many, and they may lie not on a straight line but be scattered
about the elements of the map.

3. We may try to draw a Jordan curve passing through the ramification points, but the order
of the points on the line may not be the same as the order of permutations representing the
covering f : X → Y .

A possible method to cope with the last difficulty is presented in Figs. 16 and 17. We see a
eander to appear as a technical tool to represent edges of a map we would like to lift on a covering
urface.
Now let us pile on the top of all this one more difficulty we may run into:

4. And what if the surface Y is not a sphere but a surface of genus g ≥ 1? In this case a single
non self-intersecting curve will not subdivide our surface into two simply connected regions.

All the above discussions lead us to the following rather ambitious project:
We all know what a giant step forward in the study of maps and hypermaps was their representation

y permutations. What we need now is a way, a procedure, a model to represent a pair of maps coexisting
nd cohabiting on the same surface. From this point of view, meanders represent the simplest possible
rototype, when both maps are circles on the sphere.

. Some recent developments

No end of the story yet in view.
15
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Fig. 17. After the stretching procedure shown in Fig. 16, a simple curve may be transformed into something resembling
meander.

We will not try to represent here the current state of study in the broader field of meandric
esearch. In particular, we will not touch upon applications of meanders in biology and physics,
nd even on current computational advances (like, for example, [10] or [4]). For all that, one would
eed a much more extensive overview. We limit ourselves to presenting a few results of only one
ecent publication.

In 2020, appeared a seminal 80-page paper by Delecroix, Goujard, Zograf and Zorich [5], full
f new ideas, new enumerative results, and new relations to various mathematical theories. It
oes without saying that it is impossible to give a short summary of the results obtained and
echniques used in this paper. This section, and the next one, represent a sort of a trailer, a teaser
f a forthcoming thriller.

efinition 8.1 (Minimal Arcs and a Rainbow Arc). An arc is called minimal if it connects two
eighboring points. An arc is called a rainbow if it connects the first point with the last one.

xample 8.2. The meander on the left of Fig. 2 has eight minimal arcs and no rainbow arc. The
eander of Fig. 11 has six minimal arcs and a rainbow arc.

Concerning the enumeration of meanders on the plane, there are three main novelties in [5] as
ompared to the usual approach:

• They introduce the new parameter, the number of minimal arcs, and count the meanders with
a given number p of minimal arcs.

• They count not the meanders with a given number 2n of crossings but the meanders with at
most 2n crossings.

• And, finally, they count separately meanders with and without the rainbow arc.

Then, the following theorem holds:

heorem 8.3 (Asymptotic Enumeration of Meanders, [5]). For any fixed p, the numbers M+
p (n) and

−
p (n) of closed meanders with p minimal arcs, with at most 2n crossings, and with or without a rainbow
rc, respectively, have the following asymptotics as n → ∞:

M+

p (n) = C+

p (n) · n2p−4
+ o(n2p−4) and M−

p (n) = C−

p (n) · n2p−5
+ o(n2p−5),

here

C+

p (n) =
1

(
2
2

)p−2

·

(
2p − 2

)2

,

(p − 4)p!(p − 3)! π p − 1

16
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F

C−

p (n) =
2

(2p − 5)p!(p − 4)!

(
2
π2

)p−3

·

(
2p − 4
p − 2

)2

.

or p ≫ 1 one also has the asymptotics

C+

p (n) ∼
π2

256

(
32e2

π2p2

)p

and C−

p (n) ∼
π2e2

128p

(
32e2

π2p2

)p−1

.

We see, in particular, that the meanders with a rainbow arc outweigh those without such an arc.
The result obviously concerns plane meanders. If we join the opposite ends of the line, transforming
it into the circle on the sphere, then the rainbow arc becomes a minimal one. The paper also contains
enumerative results concerning the spheric meanders, and the meanders corresponding to a given
topological type of the dual graph, and so on.

We may admire the remarkably explicit nature of the above formulas. What is even more
remarkable is the technique of their proof: it uses the Masur–Veech volumes of the moduli spaces
of meromorphic quadratic differentials. The words are pronounced; now those who have enough
courage are invited to go further on this path.

The next subject is even more exciting: more than a half of the paper is devoted to relations of
meanders to the square-tiled surfaces.

9. Square-tiled surfaces, or the theory of origami

Every course of algebraic topology will explain to us that ramified coverings f : X → Y
of a surface Y with the set of ramification points B ⊂ Y are classified according to subgroups
G ≤ π1(Y \ B) where π1(Y \ B) is the fundamental group of the corresponding space (see, for
example, Section 1.2 of [19], or Chapters VII and VIII of [31], or else [34]). Coverings of finite degree
correspond, in this construction, to subgroups of finite index. We also know that the fundamental
group of the sphere with three punctures is π1(S2 \ {•, ◦, ∗}) ∼= F2 where F2 is the free group with
two generators.

Now it is an appropriate moment to make a pause and to ask ourselves: do there exist, beside
the thrice-punctured sphere, other surfaces with the same fundamental group F2? Certainly, yes!
And the simplest one of them, the closest to the objects we study, is the once-punctured torus.
Indeed, the fundamental group of a non-punctured torus is

π1(T2) = ⟨a, b | aba−1b−1
= 1⟩,

where a and b are a parallel and a meridian on the torus, such that aba−1b−1 represents a
contractible cycle. Now, making a puncture destroys the relation aba−1b−1

= 1: the cycle is no
longer contractible. What remains is just a pair of generators without any relations between them.

We come to the following conclusion: there is a bijection between coverings of the sphere
with three ramification points, and coverings of the torus with one ramification point. Using an
altiloquent we may say that there is an equivalence of the categories: that of hypermaps on the
one hand, and that of coverings of the torus with one ramification point on the other.

Coverings of the torus also admit geometric representation. We may consider the torus as a
square, and put the ramification point at the intersection of the parallel and the meridian. Since
there is no ramification points inside the square, the preimage of the square is a collection of
squares: the covering surface becomes paved by ‘‘small’’ squares. This is why the surfaces in
question are called square-tiled surfaces, or square-ruled surfaces (as the square-ruled paper), or
even origami. Unfortunately, I am unable to explain in a concise way how meanders come into
this subject.

Notice that the origami surface is never planar: its genus cannot be less than that of the covered
surface. Nevertheless, it is possible to transfer the results of one construction to the other. The theory
of maps is a vast and well studied domain: enumeration, symmetry, bijections, random maps, and
so on, all of them must have their counterparts in the theory of square-tiled surfaces.

From the point of view of dessins d’enfants the situation is more complicated. The Riemann

complex sphere has only one complex structure. If we rigidify the sphere by putting the point • to 0,
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the point ◦ to 1, and the point ∗ to ∞, the preimages of the segment [0, 1] become themselves rigid:
they are isolated points in the corresponding moduli space. On the other hand, the complex torus
has infinitely many different complex structures: they form an orbifold of the complex dimension
1. Thus, an origami represents a curve of complex dimension 1 inside the corresponding moduli
space. What are the properties of dessins d’enfants which may be transferred to these curves is a
priori not clear but certainly very interesting.
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